$0.20 \times 0.20 \times 0.10 \text{ mm}$

11834 measured reflections

3500 independent reflections

2884 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 293 K

 $R_{\rm int} = 0.040$

refinement $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.47$ e Å⁻³

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*u*-sulfato-bis[diagua(1*H*-imidazo-[4,5-f][1,10]phenanthroline)iron(II)] dihydrate

Ming-Xing Yang,^{a,b} Shen Lin,^{a,b}* Hui-Ying Shen^a and Li-Juan Chen^{a,b}

^aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People's Republic of China Correspondence e-mail: shenlin@fjnu.edu.cn

Received 1 August 2010; accepted 12 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.099; data-to-parameter ratio = 13.5.

The title dinuclear Fe^{II} complex, $[Fe_2(SO_4)_2(C_{13}H_8N_4)_2]$ -(H₂O)₄]·2H₂O, is centrosymmetric. Two sulfate anions bridge two Fe^{II} cations to form the binuclear complex. Each Fe^{II} cation is coordinated by two N atoms from a 1*H*-imidazo[4,5f][1,10]phenanthroline (IP) ligand, two O atoms from two sulfate anions and two water molecules in a distorted octahedral geometry. Extensive O-H···O, N-H···O and $O-H \cdots N$ hydrogen bonding is present in the crystal structure. Weak π - π stacking is observed between parallel IP ring systems, the face-to-face separation being 3.428 (14) Å.

Related literature

For metal complexes with the 1H-imidazo[4,5-f]-[1,10]phenanthroline (IP) ligand, see: Liu et al. (2009); Stephenson et al. (2008); Wu et al. (1997); Yang et al. (2010); Yu (2009). For the synthesis of IP, see: Wu et al. (1997).

Experimental

Crystal data [Fe₂(SO₄)₂(C₁₃H₈N₄)₂- $(H_2O)_4] \cdot 2H_2O$ $M_r = 852.38$ Monoclinic, $P2_1/c$ a = 10.2879 (9) Å

b = 9.0738 (8) Å c = 17.0089 (16) Å $\beta = 98.892 \ (5)^{\circ}$ V = 1568.7 (2) Å³ Z = 2

Mo	$K\alpha$ radiation	
$\mu =$	1.14 mm^{-1}	

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) $T_{\rm min}=0.673,\ T_{\rm max}=1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.053500 reflections 259 parameters 9 restraints

Table 1 Selected bond lengths (Å).

Fe1-N1	2.175 (2)	Fe1-O2 ⁱ	2.1065 (18)
Fe1-N2	2.172 (2)	Fe1-O5	2.197 (2)
Fe1-O1	2.0865 (17)	Fe1-O6	2.108 (2)

Symmetry code: (i) -x + 1, -y + 1, -z.

Table 2			
Hydrogen-bond	geometry	(Å	°)

- ,	arog	• •	0114	5001			(,	<i>.</i>			
2	п	4			ח	п			п	4	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N4-H4 B ····O4 ⁱⁱ	0.86	2.05	2.891 (3)	164
$O5-H1\cdots N3^{iii}$	0.86 (4)	2.00 (4)	2.807 (3)	157 (4)
$O5-H2\cdots O3$	0.84 (2)	1.97 (2)	2.773 (3)	159 (2)
O6−H3···O3 ⁱ	0.84 (3)	1.93 (2)	2.706 (3)	152 (3)
$O6-H4\cdots O7$	0.84 (2)	1.79 (2)	2.633 (3)	178 (4)
O7−H5···O4 ^{iv}	0.84 (2)	1.99 (2)	2.803 (3)	163 (3)
$O7 - H6 \cdots O3^{v}$	0.84 (2)	1.99 (2)	2.823 (3)	169 (3)
Symmetry codes: (i) –	r + 1 - v + 1 - v	-7: (ii) x - 1 -	$v + \frac{3}{2} - \frac{1}{2}$ (iii) -	-x - v + 2 - z

+ <u>-</u>, (iv) -x + 1, -y + 2, -z; (v) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20771024), the Natural Science Foundation of Fujian Province (grant No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province, China (grant No. 2008I0013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5012).

References

- Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365-5378.
- Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stephenson, M. D., Prior, T. J. & Hardie, M. J. (2008). Cryst. Growth Des. 8, 643-653.

Wu, J.-Z., Ye, B.-H., Wang, L., Ji, L.-N., Zhou, J.-Y., Li, R.-H. & Zhou, Z.-Y. (1997). J. Chem. Soc. Dalton Trans. pp. 1395–1401. Yang, M.-X., Lin, S., Zheng, S.-N., Chen, X.-H. & Chen, L.-J. (2010). Inorg. Chem. Commun. 13, 1043–1046.
Yu, J. (2009). Acta Cryst. E65, m618. supplementary materials

Acta Cryst. (2010). E66, m1129-m1130 [doi:10.1107/S1600536810032496]

Di-µ-sulfato-bis[diaqua(1H-imidazo[4,5-f][1,10]phenanthroline)iron(II)] dihydrate

M.-X. Yang, S. Lin, H.-Y. Shen and L.-J. Chen

Comment

Transitional metal complexes of 1,10-Phenanthroline's derivatives still continue to attract intense interest not only because of their fascinating architectures but also because of the intriguing properties, such as magnetic, biological activity and optical properties. The IP ligand, as one of 1,10-Phenanthroline's derivatives, has recently gained a lot of interest with respect to synthesis of its novel metal compounds. It has been used to construct coordination frameworks by the direct interaction with metal ions or as secondary ligands to form discrete polynuclear, one-dimensional, two-dimensional and three-dimensional coordination networks. Its metal complexes are focused on Ru, Co, Ni, Cd, Cu, Mn and Zn complexes (Liu *et al.*, 2009; Stephenson *et al.*, 2008; Wu *et al.*, 1997; Yang *et al.*, 2010; Yu, 2009;). As an extension of the work on the structural characterization of IP complexes, the preparation and crystal structure of the title Fe^{II} complex is reported here.

In centrosymmetric dinuclear complex, the sulfate acts as an O—S—O bridge across two Fe^{II} cation, determining the formation of a dimer (Fig. 1). The Fe^{II} cation has a distorted octahedral coordination completed by two nitrogen atoms from one IP ligand, two oxygen atoms from water and two oxygen atoms from two sulfuric anions. The equatorial plane of the octahedron is defined by N1, O6, O2, O5 around Fe1, and the axial coordination sites are occupied by N2 and O1 atoms.

Strong hydrogen bonds exist in the structure (Table 2). The complicated three-dimensional hydrogen bonding network is shown in Fig. 2. The uncoordinated water molecular is a hydrogen bond acceptor from the coordinated water and a hydrogen bond donor to two O atoms of two sulfuric anions in two neighboring $[Fe_2(SO_4)_2(IP)_2(H_2O)_2]$ species. The $[Fe_2(SO_4)_2(IP)_2(H_2O)_2]$ molecules also form hydrogen bonds between themselves through O—H…N and N—H…O interactions from the imidazolyl ring. So $[Fe_2(SO_4)_2(C_{13}H_8N_4)_2(H_2O)_2]$ molecules and the uncoordinated water are connected by O—H…O, O—H…N and N—H…O hydrogen bonds into a three-dimensional network structure. There is also a π - π stacking interaction between the IP ligands of the neighboring $[Fe_2(SO_4)_2(IP)_2(H_2O)_2]$ species with an interplanar separation of about 3.428 (14) Å [symmetry code = -x, 2 - y, -z].

Experimental

The IP was synthesized according to reference of Wu *et al.* (1997). A mixture of $FeSO_4 \cdot 7H_2O$, benzene-1,4-dicarboxylic acid, IP and H₂O in a molar ratio 1:1:1:556 was stirred for 1 h, then sealed in an 18 ml Teflon-lined stainless steel reactor and heated for 3 d at 433 K and autogeneous pressure. After allowing the reaction mixture to cool down to room temperature, yellow crystals were obtained.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically with restrained O—H distance = 0.84 (1) Å and H…H distance = 1.44 (1) Å. The other H atoms were generated geometrically with C—H = 0.93 and N—H = 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title complound, showing 30% probability displacement ellipsoids with atoms numbering. H atoms have been omitted for clarity.

Fig. 2. The three-dimensional hydrogen bonding network along the *b* axis.

Di-µ-sulfato-bis[diaqua(1*H*-imidazo[4,5-*f*][1,10]phenanthroline)iron(II)] dihydrate

$[Fe_2(SO_4)_2(C_{13}H_8N_4)_2(H_2O)_4]$ ·2H ₂ O	F(000) = 872
$M_r = 852.38$	$D_{\rm x} = 1.805 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3717 reflections
a = 10.2879 (9) Å	$\theta = 3.0 - 27.5^{\circ}$
<i>b</i> = 9.0738 (8) Å	$\mu = 1.14 \text{ mm}^{-1}$
c = 17.0089 (16) Å	T = 293 K
$\beta = 98.892 \ (5)^{\circ}$	Prism, yellow
$V = 1568.7 (2) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 2	

Data collection

Rigaku Mercury CCD diffractometer	3500 independent reflections
Radiation source: fine-focus sealed tube	2884 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scan	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002)	$k = -11 \rightarrow 11$
$T_{\min} = 0.673, T_{\max} = 1.000$	$l = -22 \rightarrow 21$
11834 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0483P)^2 + 0.6512P]$

	where $P = (F_0^2 + 2F_c^2)/3$
3500 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
259 parameters	$\Delta \rho_{\text{max}} = 0.44 \text{ e} \text{ Å}^{-3}$
9 restraints	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	0.31610 (3)	0.68065 (4)	-0.03898 (2)	0.02489 (13)
S1	0.53353 (6)	0.60216 (6)	0.11438 (4)	0.02472 (16)
01	0.46200 (17)	0.71051 (18)	0.05947 (11)	0.0298 (4)
O2	0.63573 (18)	0.53106 (19)	0.07634 (12)	0.0348 (4)
03	0.44027 (17)	0.48994 (19)	0.13588 (11)	0.0314 (4)
O4	0.5938 (2)	0.6791 (2)	0.18664 (12)	0.0402 (5)
O5	0.20448 (19)	0.5633 (2)	0.04180 (11)	0.0347 (4)
O6	0.4329 (2)	0.7669 (2)	-0.11949 (14)	0.0465 (5)
O7	0.4090 (4)	1.0134 (3)	-0.20216 (16)	0.0697 (8)
N1	0.2437 (2)	0.9048 (2)	-0.03242 (12)	0.0256 (5)
N2	0.1277 (2)	0.6775 (2)	-0.11677 (12)	0.0261 (5)
N3	-0.1442 (2)	1.2057 (2)	-0.13981 (14)	0.0339 (5)
N4	-0.2454 (2)	1.0126 (2)	-0.20243 (13)	0.0329 (5)
H4B	-0.3055	0.9614	-0.2308	0.040*
C1	0.3070 (2)	1.0173 (3)	0.00618 (16)	0.0297 (6)
H1A	0.3891	1.0002	0.0362	0.036*
C2	0.2562 (3)	1.1597 (3)	0.00372 (17)	0.0333 (6)
H2B	0.3047	1.2358	0.0307	0.040*
C3	0.1336 (3)	1.1870 (3)	-0.03888 (16)	0.0301 (6)
НЗС	0.0971	1.2809	-0.0399	0.036*
C4	0.0648 (2)	1.0710 (3)	-0.08061 (15)	0.0252 (5)
C5	-0.0639 (2)	1.0827 (3)	-0.12661 (15)	0.0265 (5)
C6	-0.1251 (2)	0.9628 (3)	-0.16564 (14)	0.0264 (5)
C7	-0.0665 (2)	0.8197 (3)	-0.16491 (14)	0.0244 (5)
C8	-0.1246 (3)	0.6951 (3)	-0.20433 (16)	0.0324 (6)
H8A	-0.2079	0.7007	-0.2345	0.039*
C9	-0.0566 (3)	0.5653 (3)	-0.19772 (17)	0.0339 (6)
H9A	-0.0940	0.4804	-0.2222	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.0698 (3)	0.5616 (3)	-0.15377 (16)	0.0307 (6)
H10A	0.1156	0.4728	-0.1504	0.037*
C11	0.0604 (2)	0.8071 (3)	-0.12085 (14)	0.0235 (5)
C12	0.1247 (2)	0.9309 (2)	-0.07685 (14)	0.0225 (5)
C13	-0.2508 (3)	1.1563 (3)	-0.18553 (17)	0.0373 (7)
H13A	-0.3226	1.2156	-0.2042	0.045*
H2	0.266 (2)	0.521 (3)	0.0720 (16)	0.061 (11)*
Н3	0.484 (3)	0.705 (2)	-0.1358 (18)	0.045 (9)*
H1	0.165 (4)	0.631 (4)	0.064 (2)	0.113 (19)*
H5	0.410 (4)	1.1018 (18)	-0.187 (2)	0.087 (15)*
H4	0.425 (4)	0.847 (2)	-0.145 (2)	0.085 (14)*
H6	0.413 (4)	1.001 (4)	-0.2509 (9)	0.080 (14)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0230 (2)	0.02412 (19)	0.0261 (2)	0.00472 (14)	-0.00072 (15)	0.00128 (14)
S1	0.0243 (3)	0.0228 (3)	0.0247 (3)	0.0051 (2)	-0.0034 (2)	-0.0018 (2)
01	0.0280 (9)	0.0261 (8)	0.0323 (10)	0.0032 (7)	-0.0052 (8)	0.0037 (7)
O2	0.0306 (10)	0.0254 (8)	0.0496 (12)	0.0044 (8)	0.0099 (9)	-0.0017 (9)
O3	0.0305 (9)	0.0295 (9)	0.0342 (10)	0.0033 (8)	0.0046 (8)	0.0048 (8)
O4	0.0499 (12)	0.0330 (10)	0.0315 (10)	0.0058 (9)	-0.0135 (9)	-0.0075 (8)
O5	0.0322 (10)	0.0370 (10)	0.0345 (11)	0.0040 (9)	0.0038 (9)	0.0017 (9)
O6	0.0586 (14)	0.0318 (10)	0.0556 (14)	0.0146 (10)	0.0291 (12)	0.0116 (10)
O7	0.137 (3)	0.0325 (12)	0.0432 (15)	0.0165 (15)	0.0272 (17)	0.0078 (11)
N1	0.0226 (10)	0.0277 (10)	0.0254 (11)	0.0019 (8)	0.0008 (9)	-0.0009 (9)
N2	0.0263 (10)	0.0248 (10)	0.0258 (11)	0.0028 (8)	0.0000 (9)	-0.0003 (9)
N3	0.0335 (12)	0.0325 (11)	0.0342 (13)	0.0094 (10)	0.0004 (10)	0.0014 (10)
N4	0.0255 (11)	0.0399 (12)	0.0304 (12)	0.0024 (10)	-0.0050 (9)	-0.0004 (10)
C1	0.0215 (12)	0.0322 (13)	0.0331 (14)	-0.0005 (10)	-0.0023 (11)	-0.0029 (11)
C2	0.0327 (14)	0.0277 (12)	0.0380 (15)	-0.0059 (11)	0.0006 (12)	-0.0045 (12)
C3	0.0341 (14)	0.0225 (11)	0.0332 (14)	0.0016 (10)	0.0037 (12)	-0.0001 (10)
C4	0.0258 (12)	0.0255 (11)	0.0241 (12)	0.0031 (10)	0.0035 (10)	0.0017 (10)
C5	0.0278 (12)	0.0257 (12)	0.0254 (13)	0.0066 (10)	0.0020 (10)	0.0020 (10)
C6	0.0227 (12)	0.0337 (13)	0.0220 (12)	0.0049 (10)	0.0013 (10)	0.0013 (10)
C7	0.0231 (12)	0.0268 (12)	0.0230 (12)	0.0024 (10)	0.0027 (10)	0.0000 (10)
C8	0.0245 (12)	0.0376 (14)	0.0330 (15)	-0.0006 (11)	-0.0020 (11)	-0.0037 (11)
C9	0.0359 (14)	0.0303 (13)	0.0349 (15)	-0.0052 (12)	0.0034 (12)	-0.0071 (11)
C10	0.0336 (14)	0.0247 (11)	0.0333 (14)	0.0024 (11)	0.0037 (12)	-0.0009 (11)
C11	0.0227 (11)	0.0260 (11)	0.0219 (12)	0.0025 (10)	0.0036 (10)	0.0003 (9)
C12	0.0219 (11)	0.0229 (11)	0.0225 (12)	0.0031 (9)	0.0027 (10)	-0.0004 (9)
C13	0.0344 (15)	0.0424 (15)	0.0325 (15)	0.0172 (12)	-0.0027 (12)	0.0040 (12)

Geometric parameters (Å, °)

Fe1—N1	2.175 (2)	N4—C13	1.338 (4)
Fe1—N2	2.172 (2)	N4—C6	1.373 (3)
Fe1—O1	2.0865 (17)	N4—H4B	0.8600

Fe1—O2 ⁱ	2.1065 (18)	C1—C2	1.392 (4)
Fe1—O5	2.197 (2)	C1—H1A	0.9300
Fe1—O6	2.108 (2)	C2—C3	1.377 (4)
S1—O4	1.4649 (18)	С2—Н2В	0.9300
S1—O2	1.4665 (19)	C3—C4	1.399 (3)
S1—O1	1.4723 (17)	С3—НЗС	0.9300
S1—O3	1.4831 (19)	C4—C12	1.411 (3)
O5—H2	0.84 (2)	C4—C5	1.433 (3)
O5—H1	0.86 (4)	C5—C6	1.375 (3)
O6—H3	0.84 (3)	C6—C7	1.431 (3)
O6—H4	0.84 (2)	С7—С8	1.400 (3)
O7—H5	0.842 (19)	C7—C11	1.405 (3)
О7—Н6	0.844 (18)	C8—C9	1.366 (4)
N1—C1	1.329 (3)	C8—H8A	0.9300
N1—C12	1.356 (3)	C9—C10	1.397 (4)
N2—C10	1.320 (3)	С9—Н9А	0.9300
N2—C11	1.361 (3)	C10—H10A	0.9300
N3—C13	1.320 (4)	C11—C12	1.452 (3)
N3—C5	1.387 (3)	С13—Н13А	0.9300
O1—Fe1—O2 ⁱ	100.77 (7)	N1—C1—C2	123.0 (2)
O1—Fe1—O6	93.52 (9)	N1—C1—H1A	118.5
O2 ⁱ —Fe1—O6	87.60 (8)	C2—C1—H1A	118.5
O1—Fe1—N2	162.62 (8)	C3—C2—C1	119.5 (2)
O2 ⁱ —Fe1—N2	91.93 (7)	C3—C2—H2B	120.3
O6—Fe1—N2	98.86 (9)	C1—C2—H2B	120.3
O1—Fe1—N1	92.70 (7)	C2—C3—C4	118.8 (2)
O2 ⁱ —Fe1—N1	165.19 (8)	С2—С3—Н3С	120.6
O6—Fe1—N1	85.43 (8)	С4—С3—Н3С	120.6
N2—Fe1—N1	76.29 (7)	C3—C4—C12	118.1 (2)
O1—Fe1—O5	86.66 (7)	C3—C4—C5	125.0 (2)
O2 ⁱ —Fe1—O5	85.22 (8)	C12—C4—C5	116.9 (2)
O6—Fe1—O5	172.72 (8)	C6—C5—N3	110.0 (2)
N2—Fe1—O5	82.59 (8)	C6—C5—C4	121.4 (2)
N1—Fe1—O5	101.83 (8)	N3—C5—C4	128.7 (2)
O4—S1—O2	109.92 (12)	N4—C6—C5	105.8 (2)
O4—S1—O1	108.61 (10)	N4—C6—C7	130.6 (2)
O2—S1—O1	109.63 (11)	C5—C6—C7	123.5 (2)
O4—S1—O3	109.03 (12)	C8—C7—C11	118.8 (2)
O2—S1—O3	110.00 (11)	C8—C7—C6	125.5 (2)
O1—S1—O3	109.62 (10)	C11—C7—C6	115.7 (2)
S1—O1—Fe1	130.50 (11)	C9—C8—C7	118.8 (2)
S1—O2—Fe1 ⁱ	138.81 (12)	С9—С8—Н8А	120.6
Fe1—O5—H2	100 (2)	С7—С8—Н8А	120.6
Fe1—O5—H1	105 (3)	C8—C9—C10	119.2 (2)
H2—O5—H1	114.9 (18)	С8—С9—Н9А	120.4
Fe1—O6—H3	114.5 (19)	С10—С9—Н9А	120.4
Fe1—O6—H4	129 (2)	N2—C10—C9	123.4 (2)

supplementary materials

H3—O6—H4	114.8 (17)	N2-C10-H10A	118.3
Н5—О7—Н6	115.9 (18)	C9-C10-H10A	118.3
C1—N1—C12	118.2 (2)	N2—C11—C7	121.4 (2)
C1—N1—Fe1	126.73 (16)	N2-C11-C12	117.0 (2)
C12-N1-Fe1	114.93 (15)	C7—C11—C12	121.6 (2)
C10—N2—C11	118.4 (2)	N1—C12—C4	122.2 (2)
C10-N2-Fe1	126.54 (16)	N1-C12-C11	116.9 (2)
C11—N2—Fe1	114.76 (15)	C4—C12—C11	120.8 (2)
C13—N3—C5	104.0 (2)	N3—C13—N4	113.5 (2)
C13—N4—C6	106.7 (2)	N3—C13—H13A	123.2
C13—N4—H4B	126.7	N4-C13-H13A	123.2
C6—N4—H4B	126.7		
O4-S1-O1-Fe1	-162.26 (14)	C3—C4—C5—N3	0.5 (4)
O2-S1-O1-Fe1	77.62 (16)	C12—C4—C5—N3	179.7 (3)
O3-S1-O1-Fe1	-43.22 (18)	C13—N4—C6—C5	0.8 (3)
O2 ⁱ —Fe1—O1—S1	-28.46 (16)	C13—N4—C6—C7	-178.7 (3)
O6—Fe1—O1—S1	-116.68 (15)	N3—C5—C6—N4	-0.8(3)
N2—Fe1—O1—S1	107.8 (2)	C4—C5—C6—N4	179.4 (2)
N1—Fe1—O1—S1	157.73 (15)	N3—C5—C6—C7	178.8 (2)
O5-Fe1-O1-S1	56.03 (15)	C4—C5—C6—C7	-1.0 (4)
04—S1—O2—Fe1 ⁱ	123.58 (18)	N4—C6—C7—C8	0.1 (5)
O1—S1—O2—Fe1 ⁱ	-117.10 (18)	C5—C6—C7—C8	-179.4 (3)
O3—S1—O2—Fe1 ⁱ	3.5 (2)	N4—C6—C7—C11	179.6 (3)
01—Fe1—N1—C1	18.0 (2)	C5—C6—C7—C11	0.2 (4)
O2 ⁱ —Fe1—N1—C1	-137.6 (3)	C11—C7—C8—C9	0.8 (4)
06—Fe1—N1—C1	-75.3 (2)	C6—C7—C8—C9	-179.6 (3)
N2—Fe1—N1—C1	-175.6 (2)	C7—C8—C9—C10	-1.7 (4)
O5-Fe1-N1-C1	105.1 (2)	C11—N2—C10—C9	0.7 (4)
01—Fe1—N1—C12	-166.31 (17)	Fe1—N2—C10—C9	174.5 (2)
O2 ⁱ —Fe1—N1—C12	38.2 (4)	C8—C9—C10—N2	1.0 (4)
O6—Fe1—N1—C12	100.37 (18)	C10—N2—C11—C7	-1.6 (4)
N2—Fe1—N1—C12	0.08 (17)	Fe1—N2—C11—C7	-176.12 (19)
O5—Fe1—N1—C12	-79.15 (18)	C10—N2—C11—C12	177.6 (2)
O1-Fe1-N2-C10	-123.8 (3)	Fe1—N2—C11—C12	3.1 (3)
O2 ⁱ —Fe1—N2—C10	13.4 (2)	C8—C7—C11—N2	0.9 (4)
O6—Fe1—N2—C10	101.3 (2)	C6—C7—C11—N2	-178.7 (2)
N1—Fe1—N2—C10	-175.7 (2)	C8—C7—C11—C12	-178.3 (2)
O5—Fe1—N2—C10	-71.5 (2)	C6—C7—C11—C12	2.1 (4)
01—Fe1—N2—C11	50.2 (3)	C1—N1—C12—C4	-2.6 (4)
O2 ⁱ —Fe1—N2—C11	-172.64 (18)	Fe1—N1—C12—C4	-178.72 (19)
06—Fe1—N2—C11	-84.77 (19)	C1—N1—C12—C11	177.6 (2)
N1—Fe1—N2—C11	-1.72 (17)	Fe1—N1—C12—C11	1.5 (3)
O5—Fe1—N2—C11	102.43 (18)	C3—C4—C12—N1	2.2 (4)
C12—N1—C1—C2	0.8 (4)	C5-C4-C12-N1	-177.0 (2)
Fe1—N1—C1—C2	176.3 (2)	C3—C4—C12—C11	-178.0 (2)
N1—C1—C2—C3	1.5 (4)	C5—C4—C12—C11	2.7 (4)
C1—C2—C3—C4	-1.8 (4)	N2-C11-C12-N1	-3.1 (3)

C2—C3—C4—C12	0.1 (4)		C7-C11-C12-N1		176.1 (2)
C2—C3—C4—C5	179.3 (3)		N2-C11-C12-C4		177.1 (2)
C13—N3—C5—C6	0.4 (3)		C7—C11—C12—C4		-3.7 (4)
C13—N3—C5—C4	-179.8 (3)		C5—N3—C13—N4		0.1 (3)
C3—C4—C5—C6	-179.7 (3)		C6—N4—C13—N3		-0.6 (3)
C12—C4—C5—C6	-0.5 (4)				
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N4—H4B…O4 ⁱⁱ		0.86	2.05	2.891 (3)	164
O5—H1····N3 ⁱⁱⁱ		0.86 (4)	2.00 (4)	2.807 (3)	157 (4)
O5—H2…O3		0.84 (2)	1.97 (2)	2.773 (3)	159 (2)
O6—H3···O3 ⁱ		0.84 (3)	1.93 (2)	2.706 (3)	152 (3)
O6—H4…O7		0.84 (2)	1.79 (2)	2.633 (3)	178 (4)
O7—H5…O4 ^{iv}		0.84 (2)	1.99 (2)	2.803 (3)	163 (3)
O7—H6···O3 ^v		0.84 (2)	1.99 (2)	2.823 (3)	169 (3)
Symmetry codes: (ii) $x-1$, $-y+3/2$, $z-1/2$	2; (iii) - <i>x</i> , - <i>y</i> -	+2, - <i>z</i> ; (i) - <i>x</i> -	+1, -y+1, -z; (iv) $-x+1, -y$	y+2, -z; (v) x, -	-y+3/2, z-1/2.

sup-7

Fig. 1

Fig. 2